-
simplify the following
-
(3x4)4
=81x16
-
13x32⋅5x51
=65x1513
-
(x5)72⋅x9−1
=x710⋅x9−1
=x6383
-
simplify the following
- x−43+4−x5x
=x−43−5x
- x+17−5x−28x
=(x+1)(5x−2)35x−14−8x2−8x
=(x+1)(5−2)−8x2+27x−14
- 2x2+5x−33x+2−6x2+3x−34x−3
=(2x−1)(x+3)3x+2−(2x−1)(3x+3)4x−3
=(2x−1)(x+3)(3x+3)(3x+2)(3x+3)−(4x−3)(x+3)
=(2x−1)(x+3)(3x+3)9x2+15x+6−(4x2+8x−9)
=(2x−1)(x+3)(3x+3)5x2+7x+15
-
solve for x
- 34x+6x=7
9x=42
x=314
- 43x−1−35−2x=1
129x−3−20+8x=1
17x−23=12
x=1735
- 7x4−2x3=43
14x8−21=43
−52=42x
x=42−52
x=21−26
-
express as a single fraction
-
(x+2)41+(x+2)4−3
=(x+2)41+(x+2)431
=(x+2)43x+3
-
(3−2x)21−(3−2x)2−3
=(3−2x)21−(3−2x)231
=(3−2x)239−4x2−12x−1
-
solve for x
- 3a−x=cbx+3
cbx+x=3a−3
cx(b+c)=3a−3
x=b+c3ac−3c
- u=bx−2x−3
ubx=−2x−3
x(ub+2)=−3
x=ub+2−3
- xa+2b=a5
2x2a+bx=a5
2a2+abx=10x
x(10−ab)=2a2
x=10−ab2a2
-
solve for x and y
-
4ax+2by=5 and 3ax+by=−8
6ax+2by=−16
x=2a−21
by=−8+263=247
y=2b47
-
ax−2by=1 and x+y=7
ax+ay=7a
−2by−ay=1−7a
ax−2by=1
y=7−x
ax−2b(7−x)=1
ax−14b+2bx=1
(a+2b)x=14b+1
x=a+2b14b+1
y=a+2b7a−1
-
expand the following
- (x+2y)3
=x3+3x2(2y)+3x(2y)2+y3
=x3+6x2y+12xy2+y3
- (3x−y)3
=(3x)3−3(3x)2(y)+3(3x)(y)2−y3
=27x3−27x2y+9xy2−y3
- (x2+3)4
=(x2)4+4(x2)3(3)+6(x2)2(3)2+4(x2)(3)3+34
=x48+x396+x2108+x216+81
-
if 2(x+2)2+3x+4=ax2+bx+c, find the values of a, b, and c
=2(x2+4x+4)+3x+4
=2x2+11x+12
a=2
b=11
c=12
-
express (x+1)3 in the form (x+2)3+a(x+2)2+b(x+2)+c
let u=x+2
(x+1)3=u3+au2+bu+c
(u−1)3=u3+au2+bu+c
u3−3u2+3x−1=u3+au2+bu+c
a=-3
b=3
c=-1