- Solve each of the following for x
-
ax+n=m
ax=m−n
x=am−n
-
ax+b=bx
ax−bx=−b
x=a−b−b
x=b−ab
-
bax+c=0
ax=−cb
x=a−cb
-
px=qx+5
x(p−q)=5
x=p−q5
-
mx+n=nx−m
mx−nx=−m−n
x(m−n)=−m−n
x=m−n−m−n
x=n−mm+n
-
x+a1=xb
x=b(x+a)
x=bx+ba
x−bx=ba
x=1−bba
-
x−ab=x+a2b
b(x+a)=2b(x−a)
bx+ba=2bx−2ba
2bx−bx=ba+2ba
x=bba+2ba
x=3a
-
mx+n=nx+m
xn+mn2=xm+m2n
xn−xm=m2n−mn2
x=n−mm2n−mn2
x=n−mmn(m−n)
x=n−m−mn(n−m)
x=−mn
-
−b(ax+b)=a(bx−a)
−bax−b2=abx−a2
2abx=a2−b2
x=2aba2−b2
-
p2(1−x)−2pqx=q2(1+x)
p2−xp2−2pqx=q2+xq2
xq2+2pqx+xp2=p2−q2
(x)(p+q)2=(p+q)(p−q)
x=p+qp−q
-
ax−1=bx+2
bx−ab=ax+2ab
bx−ax=3ab
x=b−a3ab
-
a−bx+a+b2x=a2−b21
xa+xb+2x(a−b)=(a+b)(a−b)(a+b)(a−b)
x(a+b+2a−2b)=1
x=3a−b1
-
tp−qx+p=pqx−t
p2−pqx+p2t=qtx−t2
qtx+pqx=p2t+q2+t2
x(qt+pq)=qt+pqp2t+q2+t2
-
x+a1+x+2a1=x+3a2
(x+2a)(x+3a)+(x+a)(x+3a)=2(x+a)(x+2a)
x2+5ax+6a2+x2+4ax+3a2=2x2+6ax+4a2
5ax+6a2+4ax+3a2=6ax+4a2
3ax=−5a2
x=3−5a
- Consider the simultaneous equations ax+by=p and bx−ay=q
- Multiply the first equation by a and the second equation by b. Then eliminate y to solve for x.
a2x+aby=ap
b2x−aby=bq
x=a2+b2ap+bq
- Multiply the first equation by b and the second equation by -a. Then eliminate x to solve for y.
abx+b2y=bp
−abx+a2y=aq
y=a2+b2bp+aq
- Consider the simultaneous equations ax+by=1 and bx+ay=1
- Multiply the first equation by b and the second equation by -a. Then eliminate y to solve for x.
abx+y=1
b−ax−y=−a
ab(b2−a2)x=1−a
x=b2−a2ab−a2b
- Substitute solution for x into the first equation to solve for y.
a(b2−a2)ab−a2b+by=1
b2−a2b−ab+by=1
y=b2−a2ab2−b2
- Solve each of the following pairs of equations for x and y
-
y=ax−b and y=cx+a
ax−b=cx+a
x(a−c)=a+b
x=a−ca+b
y=a(a−ca+b)−b
y=a−ca2+ba−b(a−c)
y=a−ca2+bc
-
ax+y=c and x+by=d
x+b(c−ax)=d
x+bc−abx=d
x(1−ab)=d−bc
x=1−abd−bc
ax+y=c
ax+aby=ad
y−aby=c−ad
y=1−abc−ad
-
ax−by=a2 and bx−ay=b2
a2x−aby=a3
b2x−aby=b3
a2x−b2x=a3−b3
x=a2−b2a3−b3
x=(a+b)(a−b)(a−b)(a2+ab+b2)
x=a+ba2+ab+b2
abx−b2y=a2b
abx−a2y=ab2
−b2y+a2y=a2b−ab2
y=a2−b2a2b−ab2
y=(a+b)(a−b)(ab)(a−b)
y=a+bab
-
ax+by=t and ax−by=s
2by=t−s
y=2bt−s
2ax=t+s
x=2at+s
-
y=abx+ac and y=ax−bc
by=abx−b2c
y−by=ac+b2c
y=1−bac+b2c
abx+ac=ax−bc
x(ab−a)=−bc−ac
x=a−abac+bc
-
ax+by=a2+2ab−b2 and bx+ay=a2+b2
abx+b2y=b(a2+2ab−b2)
abx+a2y=a(a2+b2)
b2y−a2y=ba2+2ab2−b3−(a3+ab2)
y(b2−a2)=a2b+2ab2−b3−a3−ab2
y(b2−a2)=a2b+ab2−a3−b3
y=b2−a2a2b+ab2−a3−b3
y=(b+a)(b−a)(ab)(a+b)−a3−b3
y=(b+a)(b−a)(ab)(a+b)+(−1)(a+b)(a2−ab+b2)
y=(b−a)ab−a2+ab−b2
y=(b−a)(−1)(a2−2ab+b2)
y=(b−a)(−1)(a−b)(a−b)
y=a−b
bx+a(a−b)=a2+b2
bx+a2−ab=a2+b2
bx=b2+ab
x=a+b
- For each of the following, eliminate h and express s in terms of a
- s=ah and h=2a+1
h=as
as=2a+1
s=2a2+a
- s=ah and h=a(2+h)
h=as
as=2a+aas
as=2a+s
as−sa=2a
s(1−a)=2a2
s=1−a2a2
- s=h2+ah and h=3a2
s=9a4+3a3
- as=a+h and h+ah=1
h=1+a1
as=a+1+a1
s=1+x2+a1
s=a2+aa2+a+1
- as=s+h and ah=a+h
h=a−1a
as=s+a−1a
as−s=a−1a
s(a−1)=a−1a
s=(a−1)2a
- as=a+2h and h=a−s
h=2as−a
2as−a=a−s
as−a=2a−2s
as+2s=3a
s=a+23a